Quasi-periodic decompositions and the Kemperman structure theorem

نویسنده

  • David J. Grynkiewicz
چکیده

The Kemperman Structure Theorem (KST) yields a recursive description of the structure of a pair of finite subsets A and B of an abelian group satisfying |A + B| ≤ |A| + |B| − 1. In this paper, we introduce a notion of quasi-periodic decompositions and develop their basic properties in relation to KST. This yields a fuller understanding of KST, and gives a way to more effectively use KST in practice. As an illustration, we first use these methods to (a) give conditions on finite sets A and B of an abelian group so that there exists b ∈ B such that |A + (B \ {b})| ≥ |A| + |B| − 1, and to (b) give conditions on finite sets A,B,C1, . . . , Cr of an abelian group so that there exists b ∈ B such that |A + (B \ {b})| ≥ |A| + |B| − 1 and |A + (B \ {b}) + r ∑ i=1 Ci| ≥ |A| + |B| + r ∑ i=1 |Ci| − (r + 2) + 1. Additionally, we simplify two results of Hamidoune, by (a) giving a new and simple proof of a characterization of those finite subsets B of an abelian group G for which |A + B| ≥ min{|G| − 1, |A| + |B|} holds for every finite subset A ⊆ G with |A| ≥ 2, and (b) giving, for a finite subset B ⊆ G for which |A+B| ≥ min{|G|, |A|+ |B|−1} holds for every finite subset A ⊆ G, a nonrecursive description of the structure of those finite subsets A ⊆ G such that |A+B| = |A|+ |B| − 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Critical Pairs in Abelian Groups and Kemperman’s Structure Theorem

A well-known result by Kemperman describes the structure of those pairs (A, B) of finite subsets of an abelian group satisfying |A+B| ≤ |A|+ |B| − 1. We establish a description which is, in a sense, dual to Kemperman’s, and as an application sharpen several results due to Deshouillers, Hamidoune, Hennecart, and Plagne. 1. Overview of the paper The sumset of two subsets A and B of an additively ...

متن کامل

Quasi-Primary Decomposition in Modules Over Proufer Domains

In this paper we investigate decompositions of submodules in modules over a Proufer domain into intersections of quasi-primary and classical quasi-primary submodules. In particular, existence and uniqueness of quasi-primary decompositions in modules over a Proufer domain of finite character are proved. Proufer domain; primary submodule; quasi-primary submodule; classical quasi-primary; decompo...

متن کامل

Critical Pairs in Abelian Groups and Kemperman’s Theorem

A well-known result by Kemperman describes the structure of those pairs (A, B) of finite subsets of an abelian group satisfying |A+B| ≤ |A|+ |B| − 1. We establish a description which is, in a sense, dual to Kemperman’s, and as an application sharpen several results due to Deshouillers, Hamidoune, Hennecart, and Plagne. 1. Overview of the paper The sumset of two subsets A and B of an additively ...

متن کامل

Periodic coprime matrix fraction decompositions

A study is presented of right (left) coprime decompositions of a collection of N -periodic rational matrices, with some ordered structure. From a block-ordered right coprime decomposition of a rational matrix of the given periodic collection, the corresponding block-ordered right coprime decompositions of the remaining matrices of the collection are constructed. In addition, those decomposition...

متن کامل

Extensions of the Scherk-Kemperman Theorem

Let Γ = (V,E) be a reflexive relation with a transitive automorphisms group. Let v ∈ V and let F be a finite subset of V with v ∈ F. We prove that the size of Γ(F ) (the image of F ) is at least |F |+ |Γ(v)| − |Γ−(v) ∩ F |. Let A,B be finite subsets of a group G. Applied to Cayley graphs, our result reduces to following extension of the Scherk-Kemperman Theorem, proved by Kemperman: |AB| ≥ |A|+...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2005